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Abstract
The concept of strong necessary conditions for the extremum of a functional
to exist, has been applied to analyse the existence of the Bogomolny
decomposition for a system of two coupled nonlinear partial differential
equations in 1 + 1 dimensions. A general condition for a derivativeless term has
been derived for both hyperbolic and elliptic systems. In the case of independent
equations the Bogomolny equations become Bäcklund transformations.
Illustrative examples are presented for the particular form of derivativeless
terms.

PACS numbers: 02.30.Sa, 02.60.Lj

1. Introduction

In the study of some nonlinear models solutions can be obtained by considering first-order
differential equations (Bogomolny equations), instead of more complicated Euler–Lagrange
equations [1–3]. The Bogomolny equations play a special role in the study of topological
solitons. In recent years there have been numerous studies on the soliton solutions of Chern–
Simons gauge theories, the Landau–Ginzburg model and the Maxwell–Chern–Simons theory
[1, 4, 5]. The traditional method of deriving Bogomolny equations is based on transforming
an expression for the energy of a field configuration into a positively determined form, for
which the lower bound has a topological nature. A more powerful method than the traditional
one is N = 2 supersymmetric extension of the investigated model [6–8]. Practising with the
Bogomolny decomposition shows that this is a very effective tool for solving nonlinear partial
differential equations of motion. The aim of this paper is to derive the conditions for existence
of the Bogomolny decomposition by means of strong necessary conditions [9–12].

We consider systems of two coupled hyperbolic and two coupled elliptic nonlinear partial
differential equations. The coupling term in both cases is derivativeless. Next, we assume
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that the system of equations considered corresponds to the Euler equations for extremals of
a functional. We derive this functional and its variation. The necessary conditions for the
extremum should not be formulated with the aid of the Euler equations that lead to the second-
order partial differential equations. Instead of the Euler equations we apply the concept
of strong necessary conditions, which leads to the first-order partial differential equations.
This concept is based on the assumption that variations of all functional arguments and their
derivatives are independent. The variational problem based on this concept guarantees that
the set of solutions of new equations is included in the solution set resulting from the Euler
equations. However, there are two consequences of this assumption.

(1) The resulting equations for the extremals are of first order. In the general case we obtain
the partial differential equations of one order lower than the Euler equations.

(2) In the general case the resulting equations are trivial with respect to the set of solutions.

In order to obtain non-trivial equations of first order we apply to the functional the gauge
transformation generated by the topological invariants. By definition this transformation
does not change the Euler equation. When we apply the concept of independent variations
to the gauge-transformed functional we derive the non-trivial equations which establish the
Bogomolny decomposition.

The paper is organized as follows. In section 2 we briefly present the concept of strong
necessary conditions for the problem of the extremum of a functional. Sections 3 and 4 contain
considerations concerning the existence of the Bogomolny decomposition of the hyperbolic
and elliptic systems. In section 4 we illustrate the results obtained with four examples. In
the summary section we discuss the algorithmic structure of the derived formalism and point
out the possibility of constructing a method which is a combination of both the Bogomolny
decomposition and the Bäcklund transformations.

2. Concept of strong necessary conditions

The concept strong necessary conditions is based on the assumption that the equation
considered results from the necessary conditions for an extremum of a functional to exist:

δ�[u] = 0 (1)

where

�[u] =
∫
E2
F(u, u,x, u,t ) dx dt (2)

and

u(·, t) ∈ C1 u(x, ·) ∈ C1.

This condition and the assumption for the fixed boundaries lead to the Euler–Lagrange
equation:

F,u −DxF,u,x −DtF,u,t = 0. (3)

However, equation (1) can be satisfied by assuming strong necessary conditions:

F,u,x = 0 (4)

F,u,t = 0 (5)

F,u = 0. (6)
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Note that all of the solutions of equations (4)–(6) satisfy equation (3). However, in most cases
the set of solutions of equations (4)–(6) is trivial (u = constant) or empty. In order to extend
this set to a non-trivial one we use the gauge transformation of equation (2)

� → � + I (7)

and instead of equation (3) we apply equations (4)–(6). The scaling functional I is invariant with
respect to the local variation of u(x, t): δI ≡ 0. Therefore, the Euler–Lagrange equations
resulting from the extremum of � and the extremum of � + I are equivalent. However,
equations (4)–(6) are not invariant with respect to � → � + I , i.e. the gauge transformation
contributes to the strong necessary condition. This contribution can extend the subset of
solutions to the non-trivial one. In this way, we derive simpler differential equations for
extremals of the � solutions, which form a subset of the solutions of the Euler–Lagrange
equation.

3. The existence of the Bogomolny decomposition for hyperbolic systems

Let us consider a hyperbolic system of two coupled nonlinear partial differential equations:

u,xt = −∂V (u, v)
∂u

v,xt = ∂V (u, v)

∂v
(8)

and formulate the following problem: what are the forms of V (u, v) for which (8) satisfies the
Bogomolny equations? The strong necessary conditions arises from the generating functional:

�[u, v] =
∫
E2

[
1

2
(u,xu,t − v,xv,t )− V (u, v))

]
dx dt . (9)

For the purpose of the strong necessary conditions concept we generate the gauge
transformation with

I1 =
∫
E2
G1(u, v)(u,xv,t − u,t v,x) dx dt (10)

I2 =
∫
E2
DxG2(u, v) dx dt (11)

I3 =
∫
E2
DtG3(u, v) dx dt . (12)

Applying the concept of strong necessary conditions to the gauge-transformed�:

�∗ = � + I1 + I2 + I3 (13)

we derive the following field equations:

u : −∂V (u, v)
∂u

+G1,u(u,xv,t − u,t v,x ) +G2,uuu,x +G2,uvv,x +G3,uuu,t +G3,uvv,t = 0 (14)

v : −∂V (u, v)
∂v

+G1,v(u,xv,t − u,tv,x ) +G2,uvu,x +G2,vvv,x +G3,vuu,t +G3,vvv,t = 0 (15)

u,x : 1
2u,t +G1v,t +G2,u = 0 (16)

v,x : − 1
2v,t −G1u,t +G2,v = 0 (17)

u,t : 1
2u,x −G1v,x +G3,u = 0 (18)

v,t : − 1
2v,x +G1u,x +G3,v = 0. (19)
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Equations (14)–(19) must be self-consistent. Note that equations (16)–(19) characterize all
hyperbolic (1 + 1)-dimensional partial differential equations (PDEs) of the type (8) because
they do not depend on V (u, v). Formally, we have six simultaneous equations for the
five unknown functions: u, v,G1,G2,G3. The system (14)–(19) becomes the Bogomolny
equations if there exists as ansatz for G1,G2,G3 for which the above equations reduce to
two independent equations for u and v [9, 12]. Reduction of the number of independent
equations by the appropriate choice of G1,G2,G3 plays an essential role in this procedure.
Only for very special V (u, v) does such an ansatz exist. In most cases of V (u, v) the system
(14)–(19) cannot be reduced to the Bogomolny equations. However, even in this case one can
use equations (14)–(19) to derive at least a particular set of solutions to equation (8).

We treat all of the unknown functions (u, v,G1,G2,G3) as equivalent dependent variables
governed by the set of equations (14)–(19). In order to make them equivalent we have to
transform (14)–(19) into the equivalent system, which contains DxGi and DtGi instead of
Gi,u andGi,v . We apply two transformations. The first one consists of integration of (14) with
respect to u and (15) with respect to v:

−V (u, v) +G1(u,xv,t − u,tv,x ) +DxG2 +DtG3 = D(u,x, u,t , v,x , v,t ) (20)

where D is an arbitrary function. The remaining four equations (16)–(19) are transformed into
the following set:

1
2 (u,tu,x − v,t v,x) +G1(u,xv,t − u,t v,x) +DxG2 = 0 (21)

1
2

(
u2
,t − v2

,t

)
+DtG2 = 0 (22)

1
2

(
u2
,x − v2

,x

)
+DxG3 = 0 (23)

1
2 (u,tu,x − v,t v,x) +G1(u,xv,t − u,t v,x) +DtG3 = 0. (24)

Equation (21) has been obtained by adding (16) to (17) multiplied by u,x and v,x respectively.
Equations (22)–(24) have been derived in an analogous way. Equations (20)–(24) establish
a set of five equations for the five unknown functions. We call equations (20)–(24)
the divergence representation of equations (14)–(19). It results from the self-consistency
of equations (16)–(19) that all of the equations (20)–(24) must be self-consistent. We
show in further considerations that equations (21)–(24) create the necessary conditions for
integrability, whereas equation (20) corresponds to the sufficient condition. In order to satisfy
equations (21)–(24) we have to reduce their left-hand sides to divergences. Thus, we factorize
them using an appropriate choice of G1:

1
2 (u,t − v,t )(u,x + v,x) = −DxG2 (25)

1
2 (u,t − v,t )(u,t + v,t ) = −DtG2 (26)

1
2 (u,x − v,x)(u,x + v,x) = −DxG3 (27)

1
2 (u,t − v,t )(u,x + v,x) = −DtG3 (28)

where G1 = − 1
2 . Now we can see that the left-hand sides of equations (25) and (26) are

divergences if
u,t − v,t√

2
= P(v + u) (29)

and analogously, the left-hand sides of equations (27) and (28) are divergences if:
u,x + v,x√

2
= Q(v − u) (30)
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where P and Q are arbitrary functions. Equations (29) and (30) establish the necessary
conditions for integrability of equations (20)–(24), whereas the sufficient condition will result
from equation (20). Substituting equations (25) and (28) into equation (20), we obtain its
simpler form:

V (u, v) = C(u,x, u,t , v,x, v,t ) (31)

where C is an arbitrary function. Because of this freedom the solution set of (31) is, in
general, wider than the solution set of (14) and (15). In order to guarantee the equivalence of
(14), (15) and (20) in the sense of the solution sets, we reduce equation (20) to the Hamilton–
Jacobi equation by an appropriate choice of C:

V (u, v) = 1
2 (u,t − v,t )(u,x + v,x) (32)

where C has been determined from a comparison of (31) with the Hamilton–Jacobi equation
for the system defined by the action functional�∗ [13–15]:

H(u, v, u,x , v,x , πu, πv) = 0 (33)

where H is the Hamiltonian density:

H(u, v, u,x , v,x , πu, πv) = πuu,t + πvv,t − L. (34)

The Lagrangian density is defined by (9) and (13):

�∗ =
∫
E2

L dx dt . (35)

The canonical momenta are defined as follows: πu = ∂
∂u,t

L and πv = ∂
∂v,t

L. Expanding
equation (33) we obtain just (32). Substituting equations (29) and (30) into equation (32) we
derive a sufficient integrability condition for equations (20)–(24):

V (u, v) = P(u + v)Q(v − u). (36)

Note that equations (29) and (30) with P and Q subjected to equation (36) establish the
Bogomolny equations for (8). In the particular case where V (u, v) = p(u) − q(v)

equation (8) become independent:

u,xt = −∂p(u)
∂u

v,xt = −∂q(v)
∂v

(37)

and equations (29) and (30) with P and Q subjected to p(u) − q(v) = P(u + v)Q(v − u)

become the Bäcklund transformations for equation (37). To the best of our knowledge this is
the first example so far that presents the relation between the Bogomolny equations and the
Bäcklund transformations. The existence of such a relation has been suggested recently in [12].

Other integrability conditions can be derived for the following version of equation (8):

u,xt = −∂V (u, v)
∂v

v,xt = −∂V (u, v)
∂u

. (38)

These equations are the Euler–Lagrange equations for the following functional of action:

�∗ =
∫
E2

(
1

2
(u,xv,t + u,tv,x )− V (u, v)

)
dx dt + I1 + I2 + I3. (39)

The strong necessary conditions have the form:

−∂V
∂u

+G1,u(u,xv,t − u,tv,x ) +DxG2,u +DtG3,u = 0 (40)

−∂V
∂v

+G1,v(u,xv,t − u,t v,x) +DxG2,v +DtG3,v = 0 (41)
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1
2v,t +G1v,t +G2,u = 0 (42)

1
2u,t −G1u,t +G2,v = 0 (43)

1
2v,x −G1v,x +G3,u = 0 (44)

1
2u,x +G1u,x +G3,v = 0. (45)

Transforming equations (40)–(45) into the divergence representation we derive:

−V (u, v) +G1(u,xv,t − u,tv,x ) +DxG2 +DtG3 = D(u,x , v,t , u,t , v,x ) (46)
1
2 (u,xv,t + u,t v,x) +G1(u,xv,t − u,t v,x) +DxG2 = 0 (47)

u,tv,t +DtG2 = 0 (48)

u,xv,x +DxG3 = 0 (49)
1
2 (u,xv,t + u,t v,x) +G1(u,xv,t − u,t v,x) +DtG3 = 0. (50)

We make equations (47)–(50) self-consistent by assuming thatG1 = 1
2 and

v,t = P(u) (51)

u,x = Q(v) (52)

where P(u) and Q(v) are arbitrary functions that have to be used to make equation (46)
an identity. In order to determine D in equation (46) we again use the Hamilton–Jacobi
equation:

V (u, v) + u,xv,t = 0. (53)

Substituting equations (51) and (52) into equation (53) we derive the condition for the existence
of the Bogomolny decomposition:

V (u, v) + P(u)Q(v) = 0. (54)

Equations (51) and (52) subjected to equation (54) represent the Bogomolny equations.

4. Bogomolny decomposition for elliptic PDEs in 1 + 1 dimensions

In this section we apply the strong necessary conditions to the analysis of the coupled pair of
elliptic partial differential equations:

u,xx + u,tt = −∂V (u, v)
∂u

(55)

v,xx + v,tt = −∂V (u, v)
∂v

. (56)

In order to derive the Bogomolny equations from the strong necessary conditions concept we
define the following gauge-transformed functional:

�∗[u, v] =
∫
E2

[
1

2

(
u2
,x + u2

,t

)
+

1

2

(
v2
,x + v2

,t

) − V (u, v)

]
dx dt + I1 + I2 + I3 (57)

where I1, I2, I3 are the topological invariants taken as in equations (10)–(12). Following the
strong necessary condition concept we obtain the set of equations:

u : −∂V (u, v)
∂u

+G1,u(u,xv,t − u,t v,x ) + (G2,uuu,x +G2,uvv,x ) + (G3,uuu,t +G3,uvv,t ) = 0

(58)
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v : −∂V (u, v)
∂v

+G1,v(u,xv,t − u,tv,x ) + (G2,uvu,x +G2,vvv,x) + (G3,uvu,t +G3,vvv,t ) = 0

(59)

u,x : u,x +G1v,t +G2,u = 0 (60)

v,x : G1u,x + v,t +G3,v = 0 (61)

u,t : u,t −G1v,x +G3,u = 0 (62)

v,t : −G1u,t + v,x +G2,v = 0. (63)

Transforming equations (58)–(63) into the divergence representation we obtain:

−V (u, v) +G1(u,xv,t − u,t v,x) +DxG2 +DtG3 = D (64)

u2
,x + v2

,x +G1(u,xv,t − u,t v,x) +DxG2 = 0 (65)

u,xu,t + v,xv,t +DtG2 = 0 (66)

u,xu,t + v,xv,t +DxG3 = 0 (67)

u2
,t + v2

,t +G1(u,xv,t − u,tv,x ) +DtG3 = 0 (68)

where D is an arbitrary function. In order to make them self-consistent we setG1 = 1 and we
obtain:

V (u, v) = C(u,x, u,t , v,x, v,t ) (69)

u,x(u,x + v,t ) + v,x(v,x − u,t ) = −DxG2 (70)

u,t (u,x + v,t ) + v,t (v,x − u,t ) = −DtG2 (71)

u,x(u,t − v,x) + v,x(v,t + u,x) = −DxG3 (72)

u,t (u,t − v,x) + v,t (v,t + u,x) = −DtG3. (73)

Now we see that the left-hand sides of equations (70) and (71) are divergences if

u,x + v,t = −G2,u (74)

v,x − u,t = −G2,v. (75)

In order to satisfy equations (72) and (73) we have to assume

G2,u = G3,v G2,v = −G3,u. (76)

Analogously, to the procedure described in section 2, we make equation (69) equivalent to
equations (58) and (59) by reducing the solution set of equation (69) to the solution set of the
Hamilton–Jacobi equation:

V (u, v) = 1
2 ((u,x + v,t )2 + (u,t − v,x)

2). (77)

Substituting equations (74) and (75) into equation (77) we obtain the condition for the
Bogomolny decomposition:

V (u, v) = 1
2

(
G2

2,u +G2
2,v

)
G2,uu +G2,vv = 0. (78)

Equations (74)–(76) establish the Bogomolny equations. In the particular case where
V (u, v) = p(u) − q(v) equations (55) and (56) become independent and equations (74)
and (75) with G2 subjected to equation (78) become the Bäcklund transformations.

Cross-coupling in equations (55) and (56) leads to the following set of equations:

u,xx + u,tt = −∂V (u, v)
∂v

(79)



6164 K Sokalski et al

v,xx + v,tt = −∂V (u, v)
∂u

. (80)

Applying the investigation procedure derived in the previous cases we derive the divergence
representations of the strong necessary conditions for equations (79) and (80):

V (u, v) = C(u,x, u,t , v,x, v,t ) (81)

u,x(v,x +G1v,t ) + v,x(u,x −G1u,t ) = −DxG2 (82)

u,t (v,x +G1v,t ) + v,t (u,x −G1u,t ) = −DtG2 (83)

u,x(v,t + λv,x) + v,x(u,t − λu,x) = −DxG3 (84)

u,t (v,t −G1v,x) + v,t (u,t +G1u,x) = −DtG3 (85)

where C is an arbitrary function and λ is an arbitrary constant. It is impossible to make
equations (82)–(85) self-consistent with two relations such as (74) and (75) expressed by two
arbitrary functions of one variable, however, it can be done in two ways:

(1) with four relations involving four arbitrary functions of one variable;
(2) with four relations involving two functions of two variables.

Both ways lead to an over determined system of equations with a very particular set of
solutions. Such a situation means that there is no Bogomolny decomposition.

5. Examples

Now we give four examples illustrating the above considerations for particular forms of
potential V (u, v), for which Bogomolny decomposition does exist.

5.1. Hyperbolic system

The first concerns the hyperbolic system corresponding to (38):

u,xt = −λ sin(u) sinh(v) v,xt = −λ cos(u) cosh(v). (86)

Applying equations (54) and (51), (52) we derive the Bogomolny equations:

v,x +
√
λ sin(u) = 0 u,t −

√
λ cosh(v) = 0. (87)

5.2. Elliptic system

We construct an elliptic example that is integrable using the Bogomolny equations starting
from (78). AssumingG2(u, v) = 1

2 (f (u + iv) + f (u− iv)) we derive the potential:

V (u, v) = 1
2f

′(z)f ′(z∗) (88)

where z = u+iv. Substituting equation (88) into equations (55) and (56) we obtain the elliptic
system:

u,xx + u,tt = − 1
2 [f ′(z)f ′′(z∗) + f ′(z∗)f ′′(z)]

v,xx + v,tt = − i

2
[f ′(z)f ′′(z∗)− f ′(z∗)f ′′(z)]

which is integrable using the first-order differential equations:

u,x + v,t = − 1
4 (f

′(z) + f ′(z∗)) v,x − u,t = − i

4
(f ′(z)− f ′(z∗)).



Existence of Bogomolny decomposition by means of strong necessary conditions 6165

5.3. Intersecting of domain walls

These results can be directly applied to considerations of static intersecting domain-wall
solutions for some field theory models [16–18]. In order to make direct use of the obtained
results we extend the action functional (57) of the (1 + 1)-dimensional dynamical model to
the static energy of the (2 + 1)-dimensional field theory:

�∗[u, v] =
∫
E2

[
1

2

(
u2
,x + u2

,y

)
+

1

2

(
v2
,x + v2

,y

)
+ V (u, v)

]
dx dy + I1 + I2 + I3. (89)

Let us consider a polynomial potential possessing a triple degenerate minimum V = 0:

V = G2
2,u +G2

2,v G2,uu +G2,vv = 0 (90)

where G2 = v − u3v + uv3. Combining dependent variables into the complex field ψ =
u + iv we obtain the following form for V :

V = ψ∗3ψ3 − ψ3 − ψ∗3 + 1. (91)

Equation (91) possesses the following set of critical points: ψ = 1, ω, ω2, which is isomorphic
to the Z3 group of symmetry. There are therefore three possible domains and three types of
domain wall separating them [16, 17]. Combining x and y into the complex variable z = x+ iy
we transform the Bogomolny equations (74) and (75) into the following forms:

2ψ,z = i(ψ∗3 − 1) (92)

2ψ∗
,z∗ = −i(ψ3 − 1). (93)

Equations (92) and (93) are invariant under the Z3 action: (z, ψ) → (ωz, ωψ), so we are
led to seek a Z3 invariant solutions such that ψ → 1 as one goes to infinity inside the sector
−π

6 < arg z < π
6 , subject to the condition that arg z = argψ on the boundary. By symmetry

ψ must vanish at the origin and so ψ ≈ −iz for small z [17].
This qualitative analysis shows that a stable static triple intersection does indeed exist.

Therefore, metastable networks of domain walls should also exist [18].

5.4. Field equations associated with π3(S
2) homotopy group

A less trivial problem corresponds to a mapping of the three-dimensional space of independent
variables into a two-dimensional sphere. Let us assume that all possible values of a continuous
field establish a manifold isomorphic to S2. This assumption is equivalent to the assumption
of constant boundary conditions at infinity. Therefore, any continuous field function satisfying
the boundary conditions can be classified by the homotopy class. The set of all of these classes
(and the rules of superposition) establish the homotopy group π3(S

2). There are several
important field models classified by π3(S

2): the static three-dimensional classical Heisenberg
model and field models in (2 + 1)-dimensional space generating soliton equations. In this
subsection we present some results for the Heisenberg model (σ -model) [19]. The model is
governed by the following differential equation:

�w − 2w∗(∇w)2
1 +ww∗ = 0 (94)

wherew = Sx+iSy

1+Sz , the Sx, Sy, Sz are components of the classical Heisenberg spin, normalized
to a constant value: (Sx)2 + (Sy)2 + (Sz)2 = constant. Equation (94) results from the least
‘action’ principle, where the ‘action’ is represented by the integral of the static energy:

H =
∫
E3

∇w∇w∗

(1 +ww∗)2
d3x (95)
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where w is a complex field on E3. It is sufficient to attach only the following invariants:

Ii =
∫
E3

Gi(w,w
∗)εijkw,xj w

∗
,xk

d3x (96)

where4 i, j, k = 1, 2, 3,

Il+3 =
∫
E3

DxlGl+3(w,w
∗) d3x (97)

where l = 1, 2, 3. Complete list of the topological invariants should also contain the Hopf
invariant [20]. However, for simplicity we assume in advance that its weight function is equal
to zero. We derive the following strong necessary conditions:

−2w∗∇w∇w∗

(1 +ww∗)3
+ εijkGi,w(w,w

∗)w,xj w
∗
,xk

+
∑
l

DxlGl+3,w(w,w
∗)= 0 (98)

w∗
,xp

(1 +ww∗)2
+ εipkGi(w,w

∗)w∗
,xk

+Gp+3,w(w,w
∗) = 0 c.c. (99)

where p = 1, 2, 3. Equations (98) and (99) and the complex-conjugated (c.c.) equations must
be self-consistent. This requirement determinesGk(w,w

∗):

Gk(w,w
∗) = iλk

(1 + ww∗)2
(100)

for k = 1, 2, 3 and Gk(w,w
∗) = 0 for k = 4, 5, 6. Substituting equation (100) into

equation (99) we obtain:

w∗
,xp

+ iεjpkλjw∗
,xk

= 0 c.c. (101)

The necessary condition for the non-trivial solutions of equation (99) gives the following
constraint for λj :

λ2
1 + λ2

2 + λ2
3 = 1. (102)

The necessary condition (98) is automatically satisfied by (100)–(102). Therefore,
equation (101) constrained to (102) establishes the Bogomolny equations. Solving equation
(101) we derive:

w∗ = w∗ (
(iλ2 + λ3λ1)x1 + (iλ1 − λ3λ2)x2 +

(
λ2

3 − 1
)
x3

)
c.c. (103)

6. Summary

In the case of coupled pairs of partial differential equations for two unknown functions in
two-dimensional space and resulting from the least action principle, the investigations of
integrability using the Bogomolny equations can be set within the framework of the following
algorithm:

(a) construct the action functional (9);
(b) construct the topological invariants (10)–(12);
(c) perform the gauge transformation (13);
(d) derive the strong necessary conditions for the extremum of �∗ equations (14)–(19);
(e) transform equations (14)–(19) to the divergence representation equations (20)–(24);
(f) set the necessary conditions for equations (21)–(24) to be divergences;
(g) derive the Hamilton–Jacobi equation (33);

4 The summation convention used in this subsection is the following: equal indices are contracted only if they appear
on the right-hand side of εijk .
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(h) comparing equation (31) with (32) to determine the free function C;
(i) using equations (29) and (30) eliminate all partial derivatives from equation (32).

The relation between V (u, v) and the arbitrary functions P and Q establishes a condition
for the existence of the Bogomolny equations. This algorithm can be easily extended
into systems of m partial differential equations for p unknown functions in an arbitrary
n-dimensional space of independent variables. The simplest case occurs if p = n. Then
we set up boundary conditions for which any continuous solution u1, u2, . . . , un generates a
mapping belonging to the πn(Sn) homotopy group; therefore, we have to take into account all
possible topological invariants [12]. Therefore, point (c) has to be extended:
(c′) construct the set of topological invariants:

(
n

1

)1

invariants of the type
∫
En
DxiGi(u1 · · ·un) dnx

(
n

2

)2

invariants of the type
∫
En
εa1a2u1,a1u2,a2 dnx

(104)(
n

3

)2

invariants of the type
∫
En
εa1a2a2u1,a1u2,a2u3,a3 dnx

...(
n

n

)2

invariants of the type
∫
En
εa1a2···anu1,a1u2,a2 · · · un,an dnx

where εa1a2···an is a complete antisymmetric tensor. If necessary, one must supply equation
(104) with the higher-order invariants with respect to the orders of derivatives in the dependent
variables.

In the case of p < n we have to also modify point (a):
(a′) supply the investigated system with some independent systems in such a way that the
supplemented system will generate the πn(Sn) or π2n−1(S

n) homotopy group. This procedure
is a combination of both the Bäcklund transformation and the Bogomolny decomposition.
Note that the results of this paper show for the first time the transition between these two
methods.

Finally, we make some remarks concerning the relation between the results described
and the classes of functionals admitting a Bogomolny decomposition obtained from
supersymmetric arguments [21, 22]. Let us point out where the relevant attributes of the
supersymmetric theory (topological stability, the Bogomolny bound and the supermultiplet of
the Bogomolny equations) are given in the method described. Topological stability is achieved
(if necessary) by supplying the investigated system with some independent systems (see point
(a′) of this section and [9, 12]). This extension enables one to construct the topological
invariants which play the role of topological charges. In order to explain the Bogomolny
relationships we return to section 4. The first two strong necessary conditions (58) and (59)
result from the variations of equation (57) with respect to u and v. By integration they are
transformed into the Hamilton–Jacobi equation (33) which gives the form of equation (77).
The next four strong necessary conditions (60)–(63) play the role of the supermultiplet of
the Bogomolny equations. Using equations (60)–(63) we eliminate from equation (77) all
partial derivatives of the field variables u and v. Owing to the topological terms included in
�∗ and H, the obtained equation is equivalent to the saturated Bogomolny bound (78). This
is expressed by G2 which plays the role of the superpotential. In summary, we see that the
described method possesses all the attributes of the supersymmetric arguments leading to the
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Bogomolny relationship. Therefore, the Bogomolny equations resulting from the concept of
strong necessary conditions and the supersymmetric arguments must be equivalent.
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